Gusseisen mit Vermiculargraphit

Gusseisen mit Vermiculargraphit (GJV) zeichnet sich vor allem durch eine günstige Kombination von Zugfestigkeit, Zähigkeit, Dämpfung, Temperaturleitfähigkeit, Temperaturwechselbeständigkeit, guter Bearbeitbarkeit und Vergießbarkeit aus.

GJV eignet sich speziell für thermisch beanspruchte, insbesondere für temperaturwechselbeanspruchte Gussteile, wie Zylinderblöcke, Zylinderköpfe und Teile für Bremsen.

Gusseisen mit Vermiculargraphit wird in mehreren Bereichen eingesetzt. Das Hauptanwendungsgebiet stellt der Dieselmotorenbau dar: Dort findet es bei Schiffen, Großmotoren, Yachten, Nutzfahrzeugen und stark motorisierten Personenkraftwagen Anwendung. Die Gewichtseinsparung zu Grauguss kann durch dünnere Wandstärken bis zu 15 % betragen. (2)

Vermiculargraphit ist wurmförmiger Graphit, eine Graphitform, die zwischen Lamellengraphit und Kugelgraphit liegt. GJV hat bessere Festigkeitseigenschaften als Gusseisen mit Lamellengraphit aber eine nur wenig niedrigere Wärmeleitfähigkeit. Dies kann ein Vorteil gegenüber Gusseisen mit Kugelgraphit sein, das zwar eine noch höhere Festigkeit erreicht aber eine wesentlich niedrigere Wärmeleitfähigkeit besitzt.

Vermiculargraphitguss hat eine um 70 % höhere Festigkeit und einen um 35 % höheren E-Modul als Grauguss bei einer vergleichbar guten Gießbarkeit. (1)

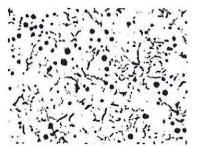


Abb.1 GJV mit Anteilen von Kugelgraphit, 50:1, ungeätzt

Sorteneinteilung

Gusseisen mit Vermiculargraphit ist in Deutschland noch nicht genormt, es existiert jedoch ein allgemein anerkanntes VDG-Merkblatt. Danach werden die Werkstoffsorten nach der Mindestzugfestigkeit von 300, 350, 400, 450 und 500 N/mm² eingeteilt. Am Häufigsten verwendet wird GJV-300 (300 N/mm²), welches die einzige rein ferritische Sorte darstellt.

Eigenschaften

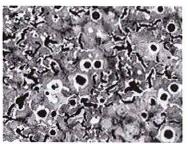


Abb. 2 GJV mit Anteilen von Kugelgraphit in einer Perlit/Ferrit-Matrix, 100:1, geätzt: 3 % Nital

Im Allgemeinen spricht man von Gusseisen mit Vermiculargraphit wenn mindestens 80 % vermicular sind, der Rest darf in Kugelform, jedoch nicht in Lamellenform vorliegen. Höhere Kugelgraphitanteile sind aber durchaus zulässig. Die mechanischen Eigenschaften von Gusseisen mit Vermiculargraphit liegen zwischen den Eigenschaften von Lamellen- und Kugelgraphit.

Festigkeit

Gusseisen mit Vermiculargraphit weist eine ausgeprägte 0,2 % Dehngrenze aus. Die Festigkeit liegt im Durchschnitt mindestens 50 % höher als bei Gusseisen mit Lamellengraphit, ist aber sowohl von der Wanddicke als auch vom Siliziumgehalt abhängig.

Eigenschaften bei erhöhten Temperaturen

Wichtige Anwendungsgebiete für Gusseisen mit Vermiculargraphit sind durch erhöhte Temperaturen und vor allem durch Temperaturwechsel beanspruchte Bauteile. Diese fallen beispielsweise durch innere und äußere Oxidation, Wachsen, Risse und/oder Verzug aus. Gusseisen mit Vermiculargraphit stellt hier einen günstigen Kompromiss zwischen einander widersprechenden Forderungen dar. Die Dauerwechselfestigkeit und seine Duktilität verleihen dem Werkstoff fast die gleiche Rissbeständigkeit wie Gusseisen mit Kugelgraphit, während es sich dank geringerem E-Modul und höherer Wärmeleitfähigkeit weniger verzieht.

Wärmeleitfähigkeit

Die Wärmeleitfähigkeit von Gusseisen ist von zwei Faktoren abhängig:

Ein Faktor ist die Menge und Ausbildung an ausgeschiedenem Graphit, da Graphit einen entscheidenden Einfluss auf den Wärmetransport hat. Die größte Wärmeleitfähigkeit besitzt Lamellengraphit. Bei kompakteren Graphitformen nimmt diese Fähigkeit deutlich ab.

Als Faustformel gilt: Wärmetransport in GJL > GJV > GJS.

Der zweite Faktor ist die Legierungszusammensetzung der metallischen Grundmasse. Dabei hat Silizium den größten Einfluss. Die Legierungselemente Si, Ni, Cr, Mo, Mn, Cu wirken sich senkend auf die Wärmeleitfähigkeit.

Als Faustformel gilt: Silizium hoch = Wärmeleitfähigkeit niedrig.

In Abb. 3 ist die Geschwindigkeit des Wärmetransportes für verschiedene Werkstoffe schematisch als Pfeil dargestellt. Man erkennt, dass der Werkstoff GJV auch bei dem Merkmal Wärmeleitfähigkeit dem Werkstoff GJS überlegen ist.

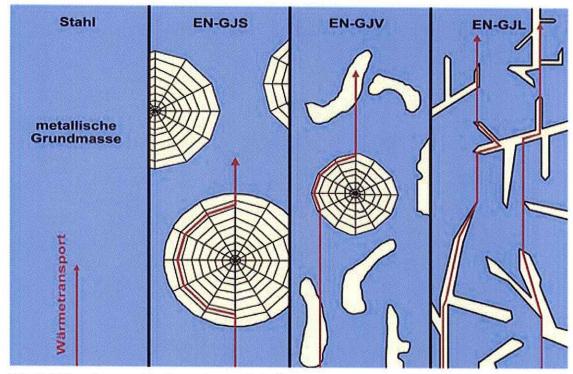
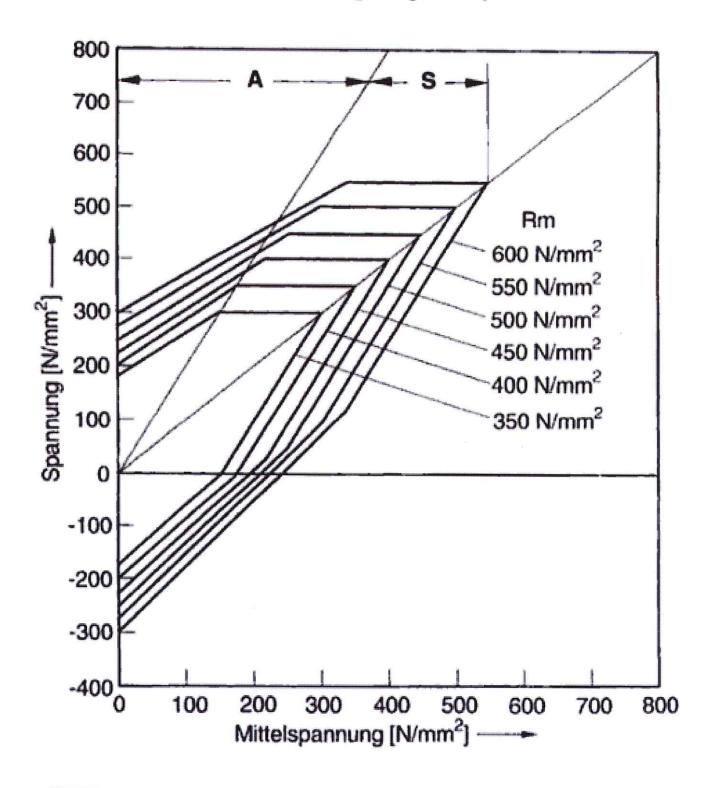


Abb. 3: Wärmetransport in Gusseisenwerkstoffen


GJV eignet sich daher für thermisch beanspruchte, insbesondere aber für temperaturwechselbeanspruchte Bauteile wie z.B. Kolbenringe. (3)

Quellenangaben:

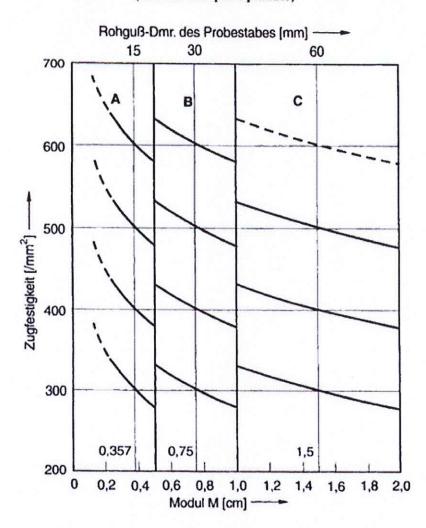
- (1) Gießerei-Lexikon, Schiele & Schön
- (2) Wikipedia
- (3) www.kuepper.de/werkstoffe/Grundlagen.htm
- (4) Taschenbuch der Gießereipraxis 2006, Stefan Hasse

Dauerfestigkeitsschaubild für Gußeisen mit Vermiculargraphit bei Biegung (nach M. Lampic-Opländer)

Spezifischer elektrischer Widerstand	20	50	50
[μΩ-cm]			

Zugfestigkeit und 0,2 %-Dehngrenze von Gußeisen mit Vermiculargraphit GJV-400 und GJV-500 in Abhängigkeit von der Temperatur (nach M. Lampic-Opländer)

Temperatur	GJV-400 mind.		GJV-500 mind.		
	$R_{ m m}$	$R_{ m p0,2}$	$R_{ m m}$	$R_{\mathrm{p0,2}}$	
°C	N/mm ²	N/mm ²	N/mm ²	N/mm ²	
20	400	321	500	427	
50	372	305	477	414	
100	351	287	460	404	
150	350	300	457	404	
200	356	307	458	406	
250	361	311	454	404	
300	360	309	442	395	
350	349	296	418	376	
400	329	275	384	348	
450	298	245	340	311	
500	260	210	289	269	


Eigenschaften von GJV bei einem Kugelgraphitanteil von 10 bis 30 % (nach M. Lampic-Opländer)

Eigenschaft	Maßeinheit	GJV-300 Ferrit	GJV-400 Perlit/Ferrit	GJV-500 Perlit min, 500	
Zugfestigkeit	N/mm ²	min. 300	min. 400		
0,2 %-Dehngrenze	N/mm ²	min. 240	min. 300	min. 340	
Bruchdehnung	%	min. 1,5	min. 1,0	min. 0,5	
Druckfestigkeit	N/mm ²	min. 600	min. 800	min. 1000	
Härte HB 30		140-210	190-250	240-280	
Biegewechselfestigkeit	N/mm ²	min. 160	min. 200	min. 250	
Zug-Druck-Wechselfestigkeit	N/mm ²	min. 100	min. 135	min. 175	
Kerbwirkungszahl β_k		1,4	1,3	1,2	
E-Modul (Zug)	kN/mm ²	min. 140	min. 160	min. 170	
E-Modul (Druck)	kN/mm ²	min. 140	min. 160	min. 170	
Querkontraktion		0,25	0,25	0,25	
Dichte	g/cm ³	7,0	7,0-7,1	7,0-7,1	
Wärmeleitfähigkeit	W/(m · K)	45	40	35	
Lineare Wärmedehnzahl	mm/(m·K)	11	11	11	
Spezifische Wärmekapazität	J/(g · K)	0,50	0,50	0,50	

Eigenschaftsvergleich (Mindestwerte) zwischen GJL-250, GJV-500 und GJS-700 bei einem Erstarrungsmodul M = 0,75 cm (Wanddicke 15 mm) - (nach M. Lampic-Opländer)

Eigenschaft	Kurzzeichen	Maßeinheit	GJL-250	GJV-500	GJS 700-2
Zugfestigkeit	R_m	N/mm ²	250	500	700
0,2 %-Dehngrenze	$R_{p0,2}$	N/mm ²	-	340	400
Bruchdehnung	Α	%	0,3	1,0	2,0
Elastizitätsmodul	E	kN/mm ²	103	170	177
Biegewechselfestigkeit	$\sigma_{\rm bW}$	N/mm ²	120	250	340
Zug-Druck-Wechselfestigkeit	σ_{zdW}	N/mm ²	60	175	245
Dichte	γ	g/cm ³	7,2	7,1	7,1
Wärmeleitfähigkeit	λ	W/(m · K)	45	40	30
Lineare Wärmedehnzahl	α	μm/(m · K)	11,7	11,0	10
Spezifische Wärmekapazität	c	J/(kg·K)	460	500	540

Klasseneinteilung und Zugfestigkeit von Gußeisen mit Vermiculargraphit in Abhängigkeit vom Gußstückmodul M (nach M. Lampic-Opländer)

(4)